Diffraction & Interference PPQs

Name	•••	•••	
------	-----	-----	--

1.	(a)	A helium-neon laser produces monochromatic light of wavelength 632.8 nm which falls normally on a diffraction grating. A first order maximum is produced at an angle of 18.5° measured from the normal to the grating. Calculate					
		(i)	the number of lines per metre on the grating,				
		(ii)	the highest order which is observable.				
				(6			
	(b)	obse	In the grating is used with a different monochromatic source, the first order maximum is rved at an angle of 17.2°				
			ulate the wavelength of this second source.				
			(Total 8 mar	(2 ks			
2.	(a)		a sound wave travelling through air, explain what is meant by particle displacement, amplitude wavelength.				
		Part	icle displacement				
		•••••					

amplitude	 	 	
•••••	 	 	
wavelength	 	 	

(b)

Graph A shows the variation of particle displacement with **time** at a point on the path of a progressive wave of constant amplitude.

Graph B shows the variation of particle displacement with **distance** along the same wave at a particular instant.

- (i) Show on graph A
 - (1) the wave amplitude, a,
 - (2) the period, T, of the vibrations providing the wave.
- (ii) Show on graph B
 - (1) the wavelength of the wave, λ ,
 - (2) two points, P and Q, which are always $\pi/2$ out of phase.

(4)

(4)

3. The diagram shows two identical loudspeakers, A and B, placed 0.75 m apart. Each loudspeaker emits sound of frequency 2000 Hz.

Point C is on a line midway between the speakers and 5.0 m away from the line joining the speakers. A listener at C hears a maximum intensity of sound. If the listener then moves from C to E or D, the sound intensity heard decreases to a minimum. Further movement in the same direction results in the repeated increase and decrease in the sound intensity. speed of sound in air = 330 m s^{-1}

- (a) Explain why the sound intensity
 - (i) is a maximum at C,

(ii) is a minimum at D or E.

.....

- (b) Calculate
 - (i) the wavelength of the sound,

.....

(ii) the distance CE.

(4)

4. (a)

figure 1

In a laboratory experiment, monochromatic light of wavelength 633 nm from a laser is incident normal to a diffraction grating. The diffracted waves are received on a white screen which is parallel to the plane of the grating and 2.0 m from it. Figure 1 shows the positions of the diffraction maxima with distances measured from the central maximum.

By means of a graphical method, use all these measurements to determine a mean value for the

number of rulings per unit length of the grating.
(Allow one sheet of graph paper)

(b)	Desc	Describe and explain the effect, if any, on the appearance of the diffraction pattern of				
	(i)	using a grating which has more rulings per unit length,				
	(ii)	using a laser source which has a shorter wavelength,				
	(iii)	increasing the distance between the grating and the screen.				
			(6)			
			(Total 12 marks)			